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COMPUTER SCIENCE

" 10/27,11/1
® Lec 12 Inference via Sampling
® Read KF Chap 12.1,12.2, 12.3

" Acknowledgements/Sources

® Koller/Friedman book, Chap 12
® Andrew McCallum, Umass, CS691

Graphical Models, Lec 15 (Approx
Inference by Sampling )

Ajit Singh, CMU, CS 10-708, Lec
11/10/2008, Approx Inference by
Sampling

wlex htm
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Overall Gameplan: KF Chap 11 “Infer as Opt”

| Heprasentation — i
Core '|
m I i ;/__-_ B !
! {
| I = = ] ERTESL =S
;2 'II 5 1.'2'15 11 | Undirected Mode! ¥ Bayesian Networks

15.3.3 A RS A

T

‘-\_‘_\
== W r 1
Relational Models Causality
534 175, (18.6.2) !211-2_2161:z1ni
| Continuous Models ol
| &5 r uu > o
143.1
s N B
| Decision Making Advanced Structure Learning
[ 22122312 17.3-4, 18,1, 18.3-4,
2345 8ho3, §1,1234 186 |
S
Advanced
I 185, 19, 20
© Rob A. Rutenbar 2011 slide 3

You've Seen Some Elementary Sampling Ideas

® Suppose we have a (real valued))random variable X.
" X takes values x&Val(X)={x%,%?, ... x¥}, with prob P(X=xi)

" What is the expected value, E[X]?
E0)~ 3 (J (k=r) - X
K=

® What if you observe a set of M samples of X?
® Observe X = x[1], x[2], ... x[M], all drawn from P(X) distrib
® How would you approximate E[X] from these observations?

1o, ~ -&- - lw
EC A % i

M=

© Rob A. Rutenbar 2011 Slide 4
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More Generally, for any Function f(X)

= Can get expected value E,[f]

M

Elfl= Y [(OP(X=1x) @EU(X)I”—- E S(xlm)

xSal(X)

® Can also estimate individual probabilities, P(X'—x)
® KF notation: indicator function 1(x[m]=x) = F >\ =

\
PO = E[L0mea=l) L © ¢ n—
' = o Z LOtmy=n\ = besns =x
=) Kev pt: - N\ gﬂ.\r{\%s\
® Everything interesting can be cast as finding E[ some func f(X) ]

© Rob A. Rutenbar 2011 Slide s
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Aside: Worksin N Dlmensmns as Well...

" X={X,, X,, ... Xy} is a set of N random vars
® We also have a joint prob distribution P( X=(x}, X2, ... x") )
" We observe a set of M values of X, drawn from this distrib
" X[1] = (X,[11,55

" X[M] = (X;[M]} X;[M], }.

© Rob A Rutenbar 2011 Slide 6



Why We Care: Approx Marginals in PGMs

*® If we can efficiently sample

from the joint distribution M rln (o8 -

defined by an arbitrary PGM,

we can answer questions we " -

care about -- approximately & e Q.
K ] -

® Unconditional:

® Like what? '_'.‘;

P(Y=y) o . ]
® Conditional (evidence): o-'ﬁmt._’
P(Y=y | E=e) —

© Rob A. Rutenbar 2011 Slide 7

=/ |
About this Lecture

® All about doing approximate inference via sampling
® Random sampling — samples from the “right” distribution
® ForaBN: TTP(X; | Pa,) ForaMN: (1/2)TT.d.

® Lots of terminology flying by
® Particles: Another name for “samples”
® Monte Carlo: Broad class of random sampling methods,
good for doing things like E[X] and estimating P(X=x)

® Markov Chain: A particular class of probabilistic graphs — g
NOT PGMs — useful in connection with MarkovsSimmins /““"‘é C/‘ﬁ ] E\f

® MCMC: Markov Chain Monte Carlo .. topic at end of lec

@ Rob A. Rutenbar 2011 Slide 8



® Sample nodes in
topological order

= ..ie, “forward” from roots to
leaves, follow directed edges

® At each node

® Draw a random sample from
the local CPD at this node... Fparies
2] o4 |06
® ..and which matches the 2| 099 ] 001

values already selected for
vars seen previously in the
“forward” walk down BN

© Rob A. Rutenbar 2011 Slide 9

~ COMPUTER SCIENC

Forward Sampling: Example

D: easy hard I: dgmb gmart
3 d & i |y
1. mtl\e‘: L C \ 0.6 [ 04} 07 ] 03
= Q \L( f‘O .
Difficulty Intelligence
G: A[B) C
gl 2 ‘ =
g los 03 o - !
.d | oes 5 S: loXhi

2|

il Sample | T | 09 | oos ke

l X
(g’> aof'“b CO7 ("”b\ T for I uji_: weak tron :1 BT
il s
Hor [o9

g2 |o4 |0s
21 099 | 001

ol

o

" 3. Sample G (depends on D,l)

b= % ( prb 0,
b ()wa" @A&/ &/A\lﬂ

€ Rob A. Rutenbar 2011 Slide 10



® How to sample G...?

® Row of CPD adds up to 1

® Build a set of contiguous buckets

__:'a’ 09 |0.08 002
across unit interval [0,1] itd'os |03

02

® Each bucket has width P(g/)

® Gen a uniform randomr on [0,1],
look at which bucket it lands in

2,0 O'LS_

0 7K 0.3

A € A

© Rob A. Rutenbar 2011
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BN: Forward Sampling

D: easy hard
® 4, Sample S (depends on ) o) &
Uﬁl 04
5".:- '-\O C f’ﬁb‘ Or°\§~ Difficuity
s R sae C
) e g Grade
® 5. Sample L (depends on G) C :-n::f el
i d 09 [ 0.02 tter
L":‘_ L\(ﬂﬂ (c_' pr lﬁ O‘ \ itd |os [03 |02 ii.: w::k
W @ Pl

® Result: 1 sample from joint P()
" Now, repeat M times (M ~ big)
® Calculate the E,[f( )] as desired

(oo, bumb, % pu)v{v I'Q\

© Rob A. Rutenbar 2011

Intelligence

on

A ) 9

!

22 K04 |06
gl 0991 0.

I:d smart
i i
0.7 0.3
SAT
S: lovhi

| .'|'|
i"R09s oos

it | =] 0.8
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COMPUTER SCIENCES

More Questions: How Big is M (#samples)?

® Can do theory in case that f( ) is an indicator func, and we
are trying to get marginals like ﬁ()(:x) = (1/M)Z,, 1(X=x)
® Technically, indicator function is a binary random var, each
sample is an independent, identically distrib “Bernoulli trial”.

=
® Chernoff bound (relative error of size &) é

i) (*Jb (_V‘r-‘. ) ‘-{ﬁ? P[I?'(X= A‘)%[(l-E)P(x).(1+g)P(x)] @

¢ UM
VO : ‘1% i}' KF Interpretation: to guarantee an accuracy of ¢ with a
{ é,'"/’ probability of 1-0, samples grows logarithmically with 1/9,
” quadratically with 1/e, and linearly with 1/P(x)
® In practice: can’t predict how many samples up front

© Rob A. Rutenbar 2011 Slide 13

COMPUTER SCIENCES

Harder Sampling Task: P(Y=y|E=e)

® Why is this hard?

® Because we need to generate 2. L 292 2.
samples that are...
® (1) from the correct prob Evidence 'i)m
istribution... o . i
distribution ‘ @ ngm 9.
® (2) where evidence var E=e $ g
Radla GasBauge

has the correct instance value

{ 2
Conditional i

" The previous method won’t

work, we can’t guarantee L - e ]
we get E=e in every K .
random sample... L -

© Rob A. Rutenbar 2011 Slide 14



" Rejection method

® Set NumSamples=0

® Generate 1 random sample S

using forward sampling

method, as before

If (evidence E=e in sample S) {
Count this sample;
NumSamples++;

}

else {rhis sample}

Repeat till have M “correct”
samples, each with E=e

© Rob A. Rutenbar 2011

Evidence E @
( &2
Conditional ;

COMPUTER SCIENCE= ¢

Simple Solution for P(Y=y|E=e): Rejection Sampling

B K. 9

,_F.;Z :Q;Pu:r oQ.r.... ( J
ag ﬂ«g-u-- (X e C\:

®

Fual
)
DSt buter

SPaPlugs

Slide 15

COMPUTER SCIENCE

Problems with Rejection Sampling

® Yes, it works - but...
® Very inefficient
® What if P(E=e) is very small?
Need many more samples now:
® If needed M to get P(Y)
® Now neel “M/P(E=e)
® This can be intractable

@\71&
K ey 0
s N7

Q P ? \,: - 6 ]
® Aside: just use ratios?

® Why not just calc both
marginals P(Y,E), P(E) and do
ratio P(Y,E=e)/P(E=e)

® Answer: still hard to get low
error, esp if P(E=e) = v small

® KFHW Prob 12.2

b

¢

© Rob A. Rutenbar 2011

® More general problem with
forward sampling:

What if evidence is toward
leaves of BN?

Fixed E=e node only allows it to
directly affects it descendants

\

[ B R 2 '
i Conditional Y Z
l:'ﬁ:: l.‘znn-_ o:-‘.rgnm 1 \ l"\
g X c ag(*f(* f{
R o\ X'\Cc
BI‘-M \‘\\‘\
..-‘ EvidenceE 77 ;}) é
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COMPUTER SCIENCE- 1

Problems with Evidence and Forward Sampling...

® Good to be able to use the jargon properly, so lets analyze
this statement from McCallum@Umass Lec15:

" “If the evidence is in the(leavesof the network, just sampling
from the prior. Could be rom the posterior!”

D: easy hard I: dumb smart P(X) = E P(Xle) P(e)
Ll o & — - . —_——
PRIOR ° POSTERIOR EVIDENCE

o it COXLE Y

'(ch& §/~~},1)xk c\@eﬁ(\:ﬂ @A {\'a«\g

B>  (aelligensd

&

,/&I"

{ LW 4 r; {\,\d (N
© Rob A. Rutenbar2a11 J& ()C ﬂ 17
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Better Solution: Likelihood Weighting

= D: easy hard I:d mart
® The intuition TN o ([eTy
® Assume evidence is SAT S=hi 06 [los 07 [fo3
® Lets try to force the sampling to to use T :
S=hi, like this... _ Cer
G:A B C

g | g | g

[
l * L Sample D %d® |03 |04 |03 L ST .
\(ﬂ | ® D=hard with Prob=0.4 q\ .a Toosoxds S: lokhi | 3

{l" \ iTa® o9 [o 08 | 002 |
(-V .2 Samplel ild |05 |03 |02 g i {095 0.05 (/\.’ﬁ)\/\
W ® |=dumb with Prob=0.7 L: weak'strong| ;i [,, f s
( ' x = ~ I_J,r |
B Deterministic w 2 | Dl 09
= a L E gif 04 l 0.6
> ® 4, Sample G (dependson D, I) S [ ¢* [7o7] 001 |

®  G=B with Prob = 0.25

® 5.Sample L (depends on G)
®  L=weak with Prob 0.4

®  Why is this wrong...?
© Rob A. Rutenbar 2011 Slide 18



Better Solution: Likelihood Weighting

D: easy
® Wrong because... 7 I
® Evidence SAT=hi means Intell is m
more likely smart than dumb G:A B C
" We will get P(I=Smart|SAT=hi) [ _[e [¢[e']
wrong, as a result of this ‘f O p—

® In this naive sampling we’ll get
P(I=smart | anything) = 0.3 always

" To fix this:amples

" Use CPD, P(S [ I=i )

® 'If sample I=smart, count this as
0.8 of a sample %‘

® If sample I=dumb, count this as
0.05 of a sample

© Rob A. Rutenbar 2011 Slide 19

COMPUTER SCIENCE

Likelihood Weighting: Weights

" KF Algorithm 12.2

® Still a form of forward sampling, but we always get the
evidence E=e right in each sample

® And, it returns not only a sample X[i] (“particle”), but also a
weight w(i] for each sample

® Weight wli] = likelihood of evidence in this particular sample

® Product of probabilities for each Ei=e evidence variable, if
we have more than one

® Lets look at algorithm

© Rob A. Rutenbar 2011
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Likelihood Weighting: KF Algorithm 12.2
\

Algorithm 12.2 Likelthood-weighted particle generation o
-Sam ) A
Procedure LW-Sample ( . A &“WL <%0
A

B, /I Bayesian network over X' 5
Z =z |l Event in the network

)

1 Let X3,...,Xn be a topological ordering of X'

2 w - 1

3 fori=1,..,n (A Pane ,\jk A O(\—-,-A'

4 u; — @(Pax,) /I Assignment to Pax, inx1,..., 21 ‘;\ é 4\

5 if X; ¢ Z then .

§ Sa.:ﬂp!er. from P(X; | u) \’& mt ey éf“f(h "N N

7 else L (
8 z; — z(X;) I Assignment to X, in z \.’g e )0.\ (" () \C Jd

9 w e w-P(z; |w;) // Multiply weight by probability of desired value - -

10 return (1,...,%n), W — - wﬂ

E=¢
A
l‘)v - (“"‘“‘r}l’mr W\ld-

® Returns: ol o, =
® Samples, each with a likelihood weight ‘"'d ;’m..‘),k
" (X[1], w[1]), (X[2], WIZIF\, (X[M],W[M!,)
L—‘J © Rob A. Rutenbar 2011 Slide 21

Likelihood Weighting: Use of Results

" (Sample, weight) = (X[1], w[1]), (X[2], w[2]), ... (X[M],w[M])
B \5V\A§ @ <o ‘1
M (_\/\/_\ J A ‘O
> wiml*1[Xm]=x] Wl K)o

P(X=x|E=¢)=2

Ew|m|
Sl T

© Rob A. Rutenbar 2011 Slide 22



Back to Our BN Ex D: easy hard |\ I: du{m_tis_;rt
d | 4 | i it
w=1 06 | 04 07§ 03 |
fo:.reach. (X, in topo order) Dificuly TR
if( X, is evidence var) { G:A B C
set sample x, = e, rara
w=w?* P(Xi | Pa)(i) i%d" |03 |04 |03 | i i
} | i%d" | 005|025 | 07 _S_:_ lofhi ¢
-I”m X m a2 0 sl EN
else 11':'.4 E: [::.3 07 e i ;05' 0.05 W= "“O‘OS
sample x, val from CPD P(X, | PaX,) i | Wegl : ONgl /' [o2 Jos 9 DS
i = ‘J(J i
return sample x=(x,, ... x,), and weight w @ 7y e T "E‘-=e"
22404 Bo6

=) wr 205049

c
> (i, smf W, wer )
\/\C\:\ﬂ - @0&?(5;"1’&\

© Rob A. Rutenbar 2011

Slide 23

COMPUTER SCIENCE-({

This is a Special Case of: Importance Sampling

® Very big idea in random sampling methods
" - g i - M
Worth te'llklng about mg;eneral s ol o~ ’(W”" -V

" Know this: \.\ C v ANS

ELf(X)]5 Y f(X)P(x)

*A%Zf(x[m )

m=]

Samples from P(X)

" New assumptions
® It’s really hard to sample x[m] from P(X)
® ...but we can find a Q(X) prob dist “similar” to P(X), from
which it is very easy to sample x[m] values

® ..and, for any sampled x[m], easy to calculate P(X=x[m])

© Rob A. Rutenbar 2011 Slide 24
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Important Sampling: Basic Derivation
® Want:

M
E.[f(X)]=E '» [ some new function of £( x)]= M]—Esame new function of f (x[])

=]

Going to sample these from "easy" Q(X)

= G = E 4&\ LR = 5‘ 06 06 #r )

=¥ 0y (
dx)
: g o Y43 1 Q\(rw Q%Mﬁgﬁdﬁ(?\)

,?(} _62[\

A NCw .“/"C “’"é\c)tk/ %‘,A \:\E,m

© Rob A. Rutenbar 2011 Slide 25

Importance Sampling: Basic Result

é(’ﬁh- %»s\ff‘

P(X) xm&’ S -
Elf(X)]=E,|f(X) ~LN f(xim])e M Ky
LFC0) g[f Q(XJ 2/ S pet )
xt (b

® In English (E_J_j E} ¢)
® Too hard to sample x[m] from P(X). So don’t. T

® Sample (randomly) x[m] from Q(X) instead.

® Evaluate the sum above, and “correct” each summand
f(x[m]) with the P()/Q() term.

® And you get the Expectation you were looking for!
® Technical restrictions
® Need “dominance”: Q(X) > 0 whenever P(X) >0

® Helps a lot to have D(P| | Q) small, ie, form of Q matters a lot
© Rob A. Rutenbar 2011 Slide 26



COMPUTER SCIENCES 7

Importance Sampllng Simple Example

Source: Course at UC Berkeley

Lecture Notes for Stat 578C OER}[L C. ANDERSON
Statistical (‘cm:tlcs 20 October 1999 subbin’ for E.A Tnosmrson)

Monte Carlo Methods and Importance Sampling

® Suppose X is a normal RV, with distrib V'(0,1)
® Suppose we want to use random sampling to approx the area

under the normal N'(0,1) bell curve.
® So we let f(X) =1. Then p(x) = N(0,1), IiF[f(X)] is this area/:v'k —Q\ﬂ
q\ \s(, ¥ E?( , (‘L[ E(&T )/-:\_ ,Lé. (
[ ¢ ” o ' -1 m N

W) EricC. Anderson, UC Berkeley 1999, Stat 578C \"_/IV /(7 /'If)( B
SV}-\I o Vg’ V)\

® Lets do this via importance sampling...

© Rob A. Rutenbar 2011 Slide 27
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Importance Sampling: Simple Example

® Mechanics are the same, even tho X is continuous

(_\ rgfﬂnﬂsi \

i 5 3 - 50 p(,1|m])
E,l f(X)]|= (x)p(x)dx=|1* p(x)dx = (x)dx
’r"l / .{\\g/at { {Df Samples drawn
7 i from Q(X)

® Lets pick a few proposal Q( ) distribs, see what happens
® Note: thisis random sampling. Every time we run this

experiment, we get a swer

® So, we run the sampling experiment many times, and we
look at the distribution of those results

® Criterion for a “good” Q: low variance (spread) on this distr
© Rob A. Rutenbar 2011 Slide 28



COMPUTER SCIENCE

Importance Sampling: Simple Example

® Mechanics are the same, even tho X is continuous

Ep(t[ml)

E.lf(X)|= ]| f(x)p(x)dx =
[f ] :{:‘f nr—] Q(llnil)

® Criterion for “good” Q: low variance

© Rob A. Rutenbar 2011
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spread) on this distr
Slide 29

Importance Sampllng Slm?Ie Example \en

Case © Sth
® First Q(X) is uniform

® Uniformon [-50,50] ©—

" M=5000samples \Ag\ﬁ
Eﬂ(rlml) e e R
M = q(x[m]) f') Nn

L D e
uniform Q(X)

M.

2

(_Q n’t get confused: this is a

@ result

® We don’t want a bell curve!

# out of 5,000

o 8 B ¥

® We want integral == 1!
® Mean is right, but spread is bad

® Quniform is a lousy proposal dist! Eric C. Anderson, UC Berkeley 1999, Stat 578C
© Rob A. Rutenbar 2011 Slide 30

G
Samples drawn & '\ ( b
from Q(X) V(\ s



® First Q(X) is Standard Cauchy dat\

" M=5000 samples .0 ) ki |
2 1)( rl m h / e ..-———l 0.1 \
m= Iq(ll"”]) X EX _"--??:1 '._‘; s P S

——
Cauchy Q(X)

:

® This a much better result! s |
® Mean is right, but spread is now e
very tight, ie, if we run this o
experiment sampling many times, i [
we “mostly” get ==1, right answer ' |
® Q Cauchy is a good proposal dist! T A ©
(b) ¢ Dist.
Eric C. Anderson, UC Berkeley 1999, Stat 578C
© Rob A. Rutenbar 2011 Slide 31
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(

Importance Sampling: Problem...

f(X)P(X)]-aiEf( oy G 000

oX)| M&'™ O(x[m))

E [ f(X)]=E,

® ..but, what if | can’t really calculate P(x[m])?
" Example:

® In a BN, you have evidence. So although you can calculate
joint factored P(X), you can’t easily get P(X|E=e), which takes
the place of the “P(X)” in above want-to-sample-from dist

® Ina MN, you don’t have Z. So, although you can calculate
unnormalized E:]Td), you can’t really get probability P(X),
which is again what you really need in above formula

® OK - now what?

© Rob A. Rutenbar 2011 Slide 32
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Importance Sampling w/o Knowing P(X)

- 1 ~
® Assume we know an unnormalized form for P : P(X) =EP(X)
" In particular, we can get P(X)

® Scenarios where/why this makes sense
®" BN:
" You can get factored form P() = TTP(X; | Pay;)
® But you want P(Y|E=e} = P(Y,e)/P(e). So: Z =P(e) here
" MN
® You can get unnormalized B=]‘[¢o

® But you can’t get real prob = (1/2)5. So: Zis just

partition function as usual, here
© Rob A. Rutenbar 2011 Slide 33
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Importance Sampling w/o Knowing P(X)

x ()
® As before: 2 st — - ) e
® Assume we can find distrib Q r[ ] 2}((” () / <
“close” to P P
® And, we can easily sample " EQ("‘ )f(.x)Q( X)
from it a N
romi =lEQ( Of(x) P(x)
S ' 2T ?
® Derivation defines a new

‘weight’ term: | E, [f( ) P(x) £ t ,,(ﬂ
" Weight w(x) = P(x)/Q(x) z O(x)

= Eg[f(x)*w()]
" New problem: Z==? -xﬁ_“.—) (C_

© Rob A. Rutenbar 2011 Slide 34
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Importance Sampling w/o Knowing P(X)

® Observe: w(x) is itself a g [f(X)]—Ef( VP(x)
random variable > i R
® Recall: w(x)=P(x)/Q(x) P(»‘»)
® Just another function of X _EQ(l)ﬂ )
i i P(.x)
- ZZQ(.r)f(x) S

® What is Eg[w(X)]...?

— I ﬁ(x)]

il . o | f(x)e
Egx)[w(X)] = Lo( ‘?z‘c?) —ZP(u:) z ‘] Z “ O(x
Write this... j @ f( x)*w( r)

\,ﬂ_ |

© Rob A. Rutenbar 2011 Slide 35

Importance Sampling w/o Knowing P(X)

e

‘/r("\
® Put it all together...

ol foﬂx =

z w(xl m [)

m=]

© Rob A. Rutenbar 2011 Slide 36
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So, How Do We Get “Easy” Q Distrib?

® Turns out to be a ‘vivid’ " Example
solution for BNs " Evidence! I=Smart, Grade=B

® Mutilated network
® Suppose we want P(Y|E=e)

® For every evidence var...

Remove ‘edges to its parents

® SetTPD on node to
deterministically set E=e

® Forward sample from this
new “mutilated” network

Y 1095 | 0.05
i' o2 |os

® This is the proposal Q( ) dist
— g'loi o9
e 5 g |04 |06
g | 099|001
© Rob A. Rutenbar 2011 Slide 37

Result: Mutilated Prop Q == Likelihod Weighting

® Nice result —
® Mutilate network with evidence
® Sample from new network (==Q)

® Use formula to get P(Y=y|E=e)
ie, f(X) = 1(Y=y)

if(.rl m I) oW (.x:[ m |)

Ep[f(X)]= 22—

2 w (xl m ])

m=1

1 | 0.99 | 001

w=1
foreach (X, in topo order)
if( X is evidence var) { |
" This is exactly same as e ‘
likelihood weighting! )
else
sample x, val from CPD P(X, | PaX)

© Rob A. Rutenbar 2011 | "eturn sample x={x,, ... x,}, and weight w | jige 33




..Unfortunate, Confusing Names in KF, tho...

® Unnormalized importance = Normalized importance
sampling

sampling

" We knou(P(X) rmalized) - W@now P(X) . @C)(\

" We sample using Q( ) Wistrib " We have to use unnorm P(X) —
® We sample using Q( ) distrib ” ’@/
M — g = &

y P(sim) 2 m I atm) )

; L ’  Plxlm E,[f(X)]=22—
E,[f(X)] g.f(-llml) O(xim)) [ ] zw(.ﬂm])

m=]

® For several reasons (KF
12.2.3.5) books says this is
most used in practice...

© Rob A. Rutenbar 2011 Slide 39
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Next: Markov Chain Monte Carlo MCMC

® Problems with forward sampling methods
® Work best in BNs since they have a “direction”
" Don’t really work in MNs, esp graphs with loops
® Problems with evidence
® Evidence is toward root: we see effect in descendants

® Evidence toward leaves: have to rely on weights
(importance sampling, likelihood weights) to connect
effects of evidence to nondescendents. Not always easy.

® MCMC methods are a different class of samplers

® Esp good for these problems, esp for inference on MNs
© Rob A. Rutenbar 2011 Slide 40
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MCMC Methos

" 2ideas
® We will generate a (long) sequence of samples

® First samples won’t be very good — eg, maybe they look like
the prior, not like the posterior that we seek

® But longer we run the sequence, the more the series
converges to be samples of the distribution we want

" Each new sample X[i+1] depends on prev sample X][i]

" This is the classical “Markov” constration, that the history on
which we depend only goes back “one step”

© Rob A. Rutenbar 2011 Slide 41

MCMC: About the Name...

® Markov Chain

" The basic mechanism is that we seek to create a Markov
Chain, which, when we “run it” will visit states — samples —
with the probability distribution we seek

® Hope is its easier to build/run the chain and have it
eventually converge to P( ), than to try to get this in some
direct manner from our PGM

® Monte Carlo

® Broad name for a huge class of random sampling methods,
that seek to do things like approx expectations, integrals, etc,
using random sampling
® Named after gambling hub in Monte Carlo, Monaco
© Rob A. Rutenbar 2011 Slide 42
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Aside: About Markov Chains

® Easy analogy: Probabilistic y
finite state machine ® KFFig12.4

® States (like an FSM)

® Transitions (like an FSM)

® No inputs (unlike an FSM)
® Each edge has a probability

® Behavior
® At time t, chain in state X(t'=x
® At time t+1, chain transitions

to one of its connected €>5 o
‘neighbors, X=x’ £
“Prob of transition x = x’ = ()( & N } 2 > 0/-
PIXt0=x’ | Xt=x] = T(x>x) X =X
© Rob A. Rutenbar 2011 Slide 43

Aside: About Markov Chains

® Easy to answer some basic . _
questions about chain KF Fig 12.4

" Ex: what is P[next state is x]?
*® Easy to answer from diagram
NN
)
el = > }
. T(\ﬂ“' i 2ty B0t
- V(y )x =23 P (wt=r3) | \fzﬁnﬁ*

Xd &X \ veed | V(X{) 0
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Aside: About Markov Chains

® Suppose we know, at current )
time step t, probability that — KF Fig12.4

we are in each of states 0.25 0.7

| Vector:

poe ) fﬂ,__t(f")
wa“) W M, )

® Ex: suppose we start chain in
state x* at t=0. Then vector is:

[y )

\7  8ah=) “(,’&r‘)&‘c'/ “{”Y-' ii‘al w X

=

(
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Aside: About Markov Chains

" We can write 1-step " _
transition probability update ~ KF Fig 12.4
in a nice matrix form... 0.25 0.7

A AL A
th "Tz ,Tr‘i \
¢t s
0 W:(, AR \ S 0y
¥ L
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Aside: About Markov Chains

® Suppose we run chain forever, ie, t> oo

® Does this vector of per-state probabilities converge to a
constant distribution, ie, the “statistics” of the chain don’t
change anymore?

t=0 t=1 t=2 t=3 t=10e6 t=10-e6+1 tDoo
. . . . e . . ok ok
"
fv f’f\ W{ ,..‘_ \/&' IVLIJ-X [0
? A B
TS ( \\ ™ ¢ \
ﬁf ‘O 1_\ '?\’
N\
C\i\ (\"PW %ll?p C\ v\ V”
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Aside: About Markov Chains

® Surprisingly easy to solve for this: Stationary distrib rt(X)
® Just use the one-step update matrix form....

e gt T
o epmnly gl TN T
oA WE VT

Oz 5=(T-T)

cone )
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Aside: About Markov Chains

" Does every Markov Chain have a stationary distrib n(X)?

®" Nope. (Sorry)

® Can’t even guarantee a single stationare dist; in some
chains, the stationary dist you arrive at depends on the
starting dist, ie, these are called Periodic Markov Chains

" We want chains that have one startionary distribution,
arrived at from any starting distribution.
® Such chains are said to be Ergodic

® Condition: There is a non-zero probability of getting from
state x to state x" in a finite number (k) of steps, for all pairs
of states in the chain

© Rob A. Rutenbar 2011 Slide 49
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From Markov Chains to MCMC

® Why do we care about this?

® Because it turns out we can design Markov Chains that have \
stationary distributions that converge asymptotically to the
complex P( ) distribs inherent in our prob graphical models

® Often the easiest way to gen these complex samples

t=10e6 t=10-e6+1 tDoo

® 0 -
AT
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Famous MCM Method: Gibbs Sampler

® Basic idea, illustrated with 4 vars
® Assume its hard to sample from full joint prob{ P(W,X,Y,2) I
® Assume its easy to sample from conditional distributions, eg
® Sample W from P(W | X=x,Y=y, Z=2)
® Sample X from P(X | W=w, Y=y, Z=2) W’l LO"'*) T/“ o
® SampleY from P(Y | W=w, X=x, Z=2) Jlr \Apﬁ \ f\,) vey = -Z
® Sample Z from P(Z | W=w, X=X, Y=y)
® Gibbs sampler mechanics

® From a starting sample value (wg,X,,Y0,2,), repeatedaraw random
samples using the ‘script’ above

® Each draw updates just 1 var, based on value of previous samples
® ie, its Markov, next sample depends on most recent sample

© Rob A. Rutenbar 2011 Slide 51
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Gibbs Sampler, More Formally

® Same example: trying to sample from P(W, X,Y,2)

" Lets write w, "~ | X, y, z) to mean..
e
" We sampfe\x from conditional distrib P(W | X=x, Y=y, Z=2)
® Then Gibbs sampler for this P( ) runs like this
\‘%t : (s\l,\c, (WJ) \FU\ ‘_')o) EQ\ vr._\i
\)(\?>~/ @(X \ WI)\ V.l))gu\
By G R\ ve ®y >

|~ CR) % 3D

\;)J © Rob A. Rutenbar 2011 Slide 52
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Gibbs Sampler: What It Does

® Lovely result: (
® Gibbs sampler will converge (in the Markov Chain sense) to a
stationary distribution that is P(W,X,Y,2)
" ..thatis, if you wait long enough, samples from Gibbs process,

o &()\Q —which up just 1 var at a time, using conditionals, will be same as

sampling from full joint P( ), for arbitrary P

'

" Nice properties
® Easy to do evidence: just restrict conditionals to set the evidence
vars to the “right” values
® Every new sampled var is (more or less) immediately a function of
every of var in problem. Unlike forward sampling

® Relatively easy to do, given factor-graph representation
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Gibbs Sampler

® 2 things to discuss

® Exactly how is this procedure a Markov Chain...?

" Not entirely obvious
® Worth going through a tiny example to show connection

® Why is this called a “Gibbs” sampler?

® Because, if your joint prob distrib P( ) is in factored, Gibbs
form, the mechanics of getting the conditionals is easy(ish)
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Gibbs Sampler as a Markov Chain

Explaining the Gibbs Sampler
- Sma" examp'E: George Casella; Edward 1. George

L) vars, X,Y The American Statistician, Vol. 46, No. 3 (Aug., 1992), 167-174.

r\/\)cl}} nL{E
o ai R

4 l
bt e W vie b bl sip)

: YHT Q(X\ " ) l
oo i B R oyt
\ \

( W 4 O©RobA. Rutenbar 2011 Slide 55
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Gibbs Sampler as a Markov Chain Yy x ~ PR 30 )
M I AT Lg \\(\{\X{}\\

® Use conditionals to draw the implicit Markov Chain
® 4 states: X=0, X=1, Y=0, Y=1

043
0.67 0.57
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Gibbs Sampler as a Markov Chain

" Interestingly, this MC does not have a stationary distrib!
® |t’s technically “periodic”: Even cycles are only Xs, odd are Ys
® So, can we transform into a pair of ‘equiv’ X-only, Y-only MCs?

0.67 ( i \@d
0.57 E> -
& > .5 \@;?
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Gibbs Sampler as a Markov Chain

" Look at X chain.
® For each possible edge, ask “how can we get here?”
® Look at paths Xi2Y—2>Xj Add up probs appropriately

. e

Q@ EHIQY M Lvy > 0o
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Gibbs Sampler as a Markov Chain

* So, if you compute all edges, what do you get?
" You get chains that (obviously) get right marginals for X and Y!
® Turns out you get everything from full joint P(X,Y)

3 /{>*> 0
RO
\\,\ A [9 ':"""I:
gilles i .
%_; . 1 06
N
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So, Why Called a “Gibbs Sampler”

* Because, if you have a factored Gibbs form for joint P, all
these sample-from-conditional-mechanics are easy(ish)

Factors: &(X), d(X,Z), d(X,Y,W), d(Y,W)
How to get: P(Y | x,z,w) ?

y @6(\ X\ 16 O AL ALY
? N VI YAL
>“ ,T

/

J

- J(H\ g Oexrw YL -
sUD I & BOae\Pifn) O
. \ \;f'.

3 —
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So, Why Called a “Gibbs Sampler”

® NOTE: You have to calculate the distribution P(Y|x,z,w)

® This is NOT a number, it’s a prob distribution; you have to
calculate all the value since you have to sample from thi<

© Rob A. Rutenbar 2011

Supose val(Y) = {a, b, c, d}

J"_f\
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So, Why Called a “Gibbs Sampler”

" Gibbs sampling in general case: X~ P(X, | x,, ...
L]

Xi.1 Xiy1s oo
Works for either BN (directed) or MN (undirected) models

X,)

Conditional probability always simplifies as per prev example
® For BNs: only need CPDs of Xi, and its children

For MNs: only need factors in Markov Blanket of Xi

© Rob A. Rutenbar 2011
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Beyond Gibbs Sampling

" Huge universe of advanced methods
® Lots of problems to deal with, for example

® Classical Gibbs sampling may be slow to converge: ie, the
“mixing time” or “burn in” of the chain is long, gets to right
distribution only after a very, very long time

® Classical Gibbs sampling also doesn’t do well when

distribution is very “peaky” or deterministic, or when
variables are highly correlated

" Lots of tricks and methods to attack these problems
® See KF book for some examples

© Rob A. Rutenbar 2011
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One Recent Example: IEEE 2008 ICIP Conf

BLIND RESTORATION OF BLURRED PHOTOGRAPHS VIA AR MODELLING AND MCMC

/
Tom E. Rishop", Rafael Molina®, James R. Hopgood*

a) IDCOM. Jeint Research Institute for Signal & Image Processing,
School of Engineering & Electronics, The University of Edinburgh, F.dlnhrgh EH9 AJL, UK
b) Dept. Ciencias de la Computacién e L A., Univ. de Granada, 18071 Granada, Spain.
t.e.bishopled.ac.uk, rms@decsai.ugr.es, james.hopgoodfed.ac,.uk

ABSTRACT
wepmposcan:wmngeandbll.\rpnnrrmdel based on non-
(AR) models, and use these to blindly
deconvolve blurred photographic images, using the Gibbs sampler.
As far as we arc aware, this is the first attempt to tackle a real-worid
blind image d

s s

lution (BID) p using Markov chain
Monte Carlo (MCMC) methods. We give examples with simulated
and real out-of-focus images. which show the state-of-the-art results
T (a) g, simulated () £, ISNR=631dB  (c) f (region Sy shown)
(im0 0. Tivte n.t [Twim. aa ]I_H iy
@06 o6 G
'\_/'n:*—/) ‘~PJ b \_d\ . 1 ____‘/
o 't"i 7 By llj' -°=.'
Y@@ e
- X¥ (9
W a.) 0.
[
ilssits 7 (d) g, photographed (e) f.ISNR=677dB (D f (region S, shown)

Fig. 1. Graphical model showing relationships between variables Fig. 2. Experimental results: (a) - (c) Exp. 1; (d) - () Exp. 2
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Lots of Code Around to do Gibbs Sampllng

e BUCS Projest - Bae TN
+ @+ o :.'\ﬂ MMO\-WI—AJ!-\- l.'ﬂ' Dayes waing gibts o
agg The BIZ.IGS Project
‘ welwcome
Welcome . -
Page Background to BUGS
Latest News The BUGS (Bayesian infarence Using Gibos Sampling) projact is concamed with faxibio softwars for the
Bayesian analysis of complex staistical modets using Maskev chain Monte Carke (MCMC) methods. The
mmmiwhmlﬂ:‘ﬂmm:mmnlwnu Classic’ BUGS program, and then

~
fware joinily with tha imparial College Schoal of Medicing at St Mary's,
us/BUGS list Lﬂﬂﬂnﬂ

WinBUGS Development is now focussed on the OponB UGS project,

New WinBUGS 1.4.3
WInBUGS 1hiy site ot e MAC B U 13 prmaniy with the stand-alone WinBLUGS
examples 1.4.3 packnge
FAGs quwwmrmﬂomm und . agr
ol and links.
pic mmmmnmm-nmamm mwmmmu
« Can be called rom F with RZWinBUGS
GeoBUGS
mwaﬁu.lh-mmmmummmh ¢ standard use. However many devslopments
PKBUGS ara now taking place using OpenBUGS.
Note: The for citing in scientific papors i: Lunn, 0.J,, Thomas, A, Best,
F ] N, and . D (2000) WinBUGS — lmmmm , g
from other antansbility. Statistics and Computing. 10325337
software .
OpenBUGS
BUGS The OpenBUGS project can be lound hara
- - Clnm warmion of he BUGS with a variaty of intariacea
- -] e code a
online + Diferent architecture kom WinBUGS 14.3: i JGS 1 4 add the WinBUGS
witm will nof yot run in
WinBUGS s puscie gl -k :
development = Has Windows interface as WinBUGS 2.2. Slide 65
aita = Running under Linux as LinBUGS
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Summary

® Can use random sampling to do approximate inference

" Two big approaches covered
® Forward sampling (mostly for directed models like BNs)
® Has some issues with E=e evidence
® Can address via likelihood weighting, importance sampling
® Gibbs sampling (works for either BNs or MNs)
® Form of MCMC, uses sequence of samples
® Works when you can compute P(xi | all other vars)

® Has some issues with convergence rate of MC sequences,

highly correlated sets of variables
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